Un nouveau type d’ordinateur qui échantillonne la lumière atteint la suprématie quantique

ordinateur suprématie quantique photons
| Yihan Luo
⇧ [VIDÉO]   Vous pourriez aussi aimer ce contenu partenaire

Une équipe de chercheurs de l’Université des sciences et technologies de Chine a conçu un nouveau type d’ordinateur quantique, basé sur l’échantillonnage de bosons. Ce dispositif, baptisé Jiuzhang, permet d’effectuer des calculs qu’aucun autre ordinateur classique au monde (même un supercalculateur) ne pourrait résoudre en un laps de temps raisonnable. C’est la seconde fois que les développeurs d’un algorithme annoncent avoir atteint ce niveau de puissance, désigné par « suprématie quantique ».

Parfois nommée « avantage quantique », la suprématie quantique désigne le nombre de qubits au-delà duquel aucun superordinateur ne peut gérer la quantité de mémoire et de bande passante nécessaire pour simuler son équivalent quantique. Cette limite se situe à environ 50 qubits. Dans le cas du système conçu par cette équipe chinoise, dirigée par Jian-Wei Pan, il faudrait des centaines de millions d’années au supercalculateur le plus puissant au monde pour accomplir ce que Jiuzhang peut calculer en 200 secondes seulement !

La suprématie quantique est quasiment atteinte pour la première fois en 2018 : lors de sa keynote d’ouverture au CES de Las Vegas, Intel avait en effet dévoilé un processeur à 49 qubits. L’engin était ainsi capable de résoudre un problème offrant près de 5000 milliards de solutions possibles ! Mais c’est en 2019 qu’une équipe d’ingénieurs de Google revendique avoir développé pour la première fois une certaine forme de suprématie quantique, sur 53 qubits, via leur processeur Sycamore. L’exploit avait fait l’objet d’un article dans la revue Nature : l’ordinateur était capable d’effectuer en quelques minutes ce qui, selon les auteurs, aurait pris 10’000 ans à un supercalculateur. Cependant, des chercheurs d’IBM ont par la suite contesté ces résultats, arguant que le calcul soumis à Sycamore aurait été réalisé par le supercalculateur Summit d’IBM en 2 jours et demi ; la « suprématie » était donc remise en cause.

Un ordinateur quantique basé sur des photons

À la différence de l’ordinateur quantique de Google — ou plus récemment, l’ordinateur Advantage conçu par D-Wave — qui exploite les matériaux supraconducteurs, ce nouveau calculateur utilise des photons (des particules de lumière). L’échantillonnage de bosons est en effet un modèle d’ordinateur qui repose sur une propriété quantique particulière des photons : si deux photons identiques frappent exactement au même moment un séparateur de faisceau — qui divise un faisceau de lumière en deux faisceaux distincts se propageant dans des directions différentes —, ils ne seront pas séparés l’un de l’autre ; au contraire, ils restent ensemble et voyagent tous deux dans la même direction.

Si l’on envoie de nombreux photons à travers une séquence de séparateurs de faisceaux plusieurs fois de suite, des motifs commencent à émerger dans les trajets suivis par les particules de lumière. Or, ces motifs sont extrêmement difficiles à simuler ou à prévoir avec des ordinateurs classiques. La recherche d’ensembles possibles de chemins de photons est ce que l’on appelle l’échantillonnage de bosons.

ordinateur quantique lasers photons
L’ordinateur quantique Jiuzhang manipule la lumière via un agencement complexe de dispositifs optiques. Crédits : Hansen Zhong

Le dispositif d’échantillonnage de bosons développé par Jian-Wei Pan et son équipe, nommé Jiuzhang, utilise des impulsions laser, envoyées dans un labyrinthe composé de 300 séparateurs de faisceaux et 75 miroirs. Comme expliqué ci-dessus, les photons sont d’abord envoyés dans un réseau de canaux, puis chacun rencontre une série de séparateurs de faisceaux ; chacun de ces séparateurs envoie les photons sur deux chemins simultanément, ce qu’on appelle une « superposition quantique ». Ces chemins peuvent fusionner, et les divisions et fusions successives font que les photons interfèrent les uns avec les autres selon des règles quantiques. Enfin, le nombre de photons dans chacun des canaux de sortie du réseau est mesuré (chaque photon lu en sortie équivaut à un qubit).

Utilisé avec un grand nombre de photons et de nombreux canaux (100 ici), cet ordinateur quantique produit une distribution de nombres trop complexes à calculer pour un ordinateur classique. Dans cette expérience, les chercheurs affirment avoir mesuré jusqu’à 76 photons (43 en moyenne). L’équipe a calculé qu’il serait impossible de simuler un échantillonnage de bosons avec une aussi haute fidélité sur un superordinateur classique. Il faudrait notamment 600 millions d’années au supercalculateur japonais Fugaku, le plus puissant au monde à ce jour, pour accomplir ce que Jiuzhang peut réaliser en 200 secondes (3,3 minutes). Le Sunway TaihuLight, actuellement à la quatrième place du classement des superordinateurs, mettrait quant à lui près de 2,5 milliards d’années !

Une suprématie quantique peu exploitable

Ces résultats, publiés dans la revue Science, constituent surtout la preuve que la suprématie quantique peut aussi être obtenue via l’échantillonnage de bosons photoniques. « Cela représente un chemin matériel complètement différent de celui des qubits supraconducteurs utilisés par Google », explique Scott Aaronson de l’Université du Texas à Austin. Mais ce spécialiste en informatique quantique ajoute qu’aussi exceptionnel que soit le système Jiuzhang, il sera peu exploitable : « Il n’est pas évident que l’échantillonnage de bosons ait des applications en soi, en plus de démontrer la suprématie quantique », déclare-t-il.

Certes, le dispositif dépasse largement tous les autres ordinateurs connus, mais uniquement pour effectuer une tâche extrêmement spécifique, à savoir l’échantillonnage de bosons. Pour le moment, la technique ne peut pas conduire à la conception d’un ordinateur quantique universel ou évolutif, un ordinateur réellement utilisable. Il faudrait pour cela modifier le mécanisme d’échantillonnage des bosons, pour par exemple avoir la possibilité de suspendre l’expérience, d’effectuer des mesures ou de rediriger certains photons, afin de résoudre des types de calculs différents. Une étape particulièrement difficile à réaliser selon Aaronson. En attendant, le dispositif pourrait tout de même s’avérer utile en chimie quantique ou pour la génération de nombres aléatoires pour le chiffrement quantique.

Par comparaison, l’ordinateur quantique de Google pourrait être en théorie programmé pour exécuter une grande variété d’algorithmes. Cependant, à l’heure actuelle, aucun ordinateur quantique n’est utilisable concrètement. Mais les recherches en informatique quantique vont bon train et les pontes du secteur (Google, IBM, Microsoft, Intel, etc.) redoublent d’efforts pour progresser dans le domaine. La plupart des recherches en cours s’intéressent aux machines quantiques basées sur les supraconducteurs, mais d’autres formes de matériel quantique existent : des ordinateurs quantiques photoniques, tels que Jiuzhang, mais aussi des ordinateurs quantiques fabriqués à partir de qubits basés sur des atomes en lévitation dans des champs électriques (des pièges à ions), comme ceux proposés par Honeywell et IonQ. Reste à savoir quelle technique sera réellement exploitable.

Source : Science, H.-S. Zhong et al.

Laisser un commentaire